
    
      Navigation

      
        	
          index

        	
          next |

        	mvigilCS263technology 1 documentation 
 
      

    


    
      
          
            
  
Welcome to Morgan’s CS263 Technology Tutorial!

In this tutorial, I guide you through setting up your own local ownCloud server and discuss the application API. We will explore the App Framework modules by creating and enabling an app based on the Advanced App Template.

For more information about ownCloud in general, please see http://owncloud.org/about/.

Contents:



	Getting started
	Installing ownCloud

	Connecting to your ownCloud server via browser

	Helpful resources





	Overview of ownCloud API’s
	ownCloud App API

	App Framework API





	ownCloud App Tutorial
	Setup

	Creating an App based on Advanced App Template

	Enabling App





	Modules of the Advanced App Template
	3rdparty

	admin

	appinfo

	coffee

	controller

	css

	db

	dependencyinjection

	img

	js

	templates

	tests












Search


	Search Page







          

      

      

    


    
         Copyright 2013, Morgan Vigil.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	mvigilCS263technology 1 documentation 
 
      

    


    
      
          
            
  
Getting started


Installing ownCloud


Server

At the heart of the ownCloud is the idea of hosting your own cloud.
In this part of the tutorial, we will describe installing and running your own ownCloud server.

There are two options:


	Installing the development version of ownCloud from source https://github.com/owncloud/core

	Installing the stable version of ownCloud from http://owncloud.org/install/



Hint: the stable version is an easier intall process.




Client (optional)

After you have installed your ownCloud server, download the appropriate client. You can choose a mobile or desktop client at http://owncloud.org/install/.
However, ownCloud is accessible over the web via browser.






Connecting to your ownCloud server via browser

If you are on the machine where the ownCloud server is installed, start a new browser session and go to:

http://localhost/owncloud/index.php



If you are accessing a remote ownCloud server, visit:

http://REMOTE_OWNCLOUD_SERVER_IP/owncloud/index.php



In case you are using Mac OS X for development and set up your web server using MAMP, connect to your ownCloud server with:

http://localhost:8888/owncloud/index.php



Note that if you have configured your server to only be accessible via SSL, you need to access it using ‘https’ instead of ‘http’. However, the default server is configured to operate using standard HTTP.




Helpful resources

http://doc.owncloud.org/server/5.0/admin_manual/installation.html gives thorough installation guides for different operating systems (including various Linux distributions).







          

      

      

    


    
         Copyright 2013, Morgan Vigil.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	mvigilCS263technology 1 documentation 
 
      

    


    
      
          
            
  
Overview of ownCloud API’s

In building an ownCloud application, there are two approaches: the ownCloud App API and the App Framework API.
This tutorial focuses on developing apps using the App Framework API. However, I will discuss the main
differences between the APIs and reference users to another tutorial on creating an ownCloud app using the App API.

In building an ownCloud application, there are two approaches: the ownCloud App API and the App Framework API.
This tutorial focuses on developing apps using the App Framework API. However, I will discuss the main
differences between the APIs and reference users to another tutorial on creating an ownCloud app using the App API.

In deciding between using the ownCloud App API and the App Framework API, consider that the ownCloud App API facilitates
the app-creating process for developers new to programming. Rather than use the MVC architecture that the App Framwork API
employs, ownCloud App API uses templates.

The main differences between the App API and the AppFramework API are summarized in a table below.








	Criteria
	ownCloud App API
	App Framwork API




	Difficulty
	easy
	medium


	Architecture
	routes and templates
	routes and MVC


	Testability
	hard
	easy


	Maintainability
	hard
	easy


	Templates
	OC_Template
	OC_Template and Twig


	Security
	manual checks
	escapse XSS,
default CSRF and
Authentication checks






ownCloud App API


	Components:

	
	OCS

	OCS_Result

	OC Templates

	View







Please follow this link to get the full ownCloud App API listing: http://api.owncloud.org/namespaces/OCP.html




App Framework API


	Componenets:

	
	Main

	API Layer

	Request

	Controllers

	Database

	Responses

	Middleware

	Security and Authentication

	Twig Templates

	Testing







Please follow this link to get a full listing of the ownCloud API: http://doc.owncloud.org/server/master/developer_manual/app/appframework/api/index.html







          

      

      

    


    
         Copyright 2013, Morgan Vigil.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	mvigilCS263technology 1 documentation 
 
      

    


    
      
          
            
  
ownCloud App Tutorial

This is an ownCloud app tutorial that will result in a simple application for ownCloud based on the Advanced App Template. This tutorial is written for the stable version of ownCloud (v. 5) and with the support of the stable app repository.
Prior to developing this app, you will need to have your ownCloud server set up based on the stable branch.


Setup


	Clone the ownClouds apps repository into either:

	
	/var/www

	/var/www/html

	/srv/http

	/Users/[USER]/Sites







Change into the appropriate web server directory:

cd /Users/[USER]/Sites





And clone the appropriate version of the apps:

sudo git clone git://github.com/owncloud/apps.git -b stable5 apps



Now, change into the apps/ directory:

cd apps/



To finish our setup, we need to make a modification to two files, apptemplateadvanced/appinfo/info.xml and appframework/appingo/info.xml. There is currently a bug in ownCloud core that removes app directories when an app is disabled. In order to prevent that, add this line in both files after the <author>AUTHOR NAME</author>:

<shipped>true</shipped>






Creating an App based on Advanced App Template

ownCloud has made using the App Framework even easier with the Advanced App Template. The following steps will show you how to make your own app from the Advanced App Template.

First, copy the apptemplateadvanced/ directory to a directory with the name of your app:

cp -r apptemplateadvanced/ myapp



Change into your app directory:

cd myapp/



Now, you need to customize the files to refer to your app id and name instead of apptemplateadvanced.
We will do this by executing:

find . -type f -exec sed -i .tmp 's/apptemplateadvanced/myapp/g' {} \;
find . -type f -exec sed -i .tmp 's/apptemplate_advanced/myapp/g' {} \;
find . -type f -exec sed -i .tmp 's/AppTemplateAdvanced/MyApp/g' {} \;
find . -type f -exec sed -i .tmp 's/Advanced App Template/My App/g' {} \;
find . -name "*.tmp" -type f -delete



All that’s left is changing the author’s name in myapp/appinfo/info.xml to your name.




Enabling App

To enable your app, you need to link it with the owncloud/apps/ directory:

ln -s /path/to/file/apps/myapp /path/to/file/owncloud/apps/myapp





Go to the ownCloud URL at http://localhost/owncloud/index.php or http://localhost:8888/owncloud/index.php.
Navigate to the Apps page.

First, you will need to enable the App Framework app.

‘My App’ should be in the nav bar on the left side of the page. Enable it and an icon with the words “My App” should appear in the ownCloud dock on the leftmost part of the screen. If you click it, it will take you to a page with a text field and a button. The logic for this app is dictated by myapp/templates/main.php. To get an idea of how the components of myapp work, see Modules of the Advanced App Template.

That’s it! That’s all it takes to get an application set up with the ownCloud App Framework and Advanced App Template. Happy coding!







          

      

      

    


    
         Copyright 2013, Morgan Vigil.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          previous |

        	mvigilCS263technology 1 documentation 
 
      

    


    
      
          
            
  
Modules of the Advanced App Template


	The following components are part of Advanced App Template:

	
	3rdparty

	admin

	appinfo

	cache

	coffee

	controller

	css

	db

	dependencyinjection

	img

	js

	templates

	tests







All of these components are necessary for an app based on the Advanced App Template to work.


3rdparty

3rd party javascript that can be integrated into the app.




admin

Contains settings.php, which calls main() and connects main with the owncloud/admin page.




appinfo


	Contains all metadata pertaining to the app. The three main files are:

	
	info.xml

	routes.php

	app.php








info.xml


	info.xml specifies:

	
	License This file also dictates the license used for the app. In order for the app to function, it must be AGPL compatible and MUST NOT be a proprietary license.

	Author

	Version

	ownCloud version requirements

	App ID

	App Name

	App Description










routes.php

Maps file pathnames to URLs. This facilitates method calling or value extraction from certain URLs.




app.php

Provides navigation entry code that provides ownCloud with App ID, App Name, App Description, App Author, and App URL so that it can produce the App in the App Nav bar.






coffee

CoffeeScript files that compile into JavaScript files in js.




controller

Contains the Controller functions that are used as part of the MVC framework.




css


	Contains CSS files for your app. To include an image or css in CSS, prepend the following to your path:

	
	%appswebroot%: gets the absolute path to your app

	%webroot%: gets the absolute path to owncloud







Example:

.folder > .title {
        background-image: url('%webroot%/core/img/places/myimage.png');
}




	ownCloud uses formfactors for different platforms. ownCloud automatically detects the formfactor your app employs. The different formfactors are:

	
	mobile

	tablet

	standalone







In order to use the formfactor, add it as part of the filename. For example:


style.mobile.css
mystyle.standalone.css





db

Contains database layer for your app. Separates data entries from database queries.




dependencyinjection

Enables you to create testable code. This is done by decoupling class dependencies. Dependency Injection facilitates the automatic creating of unit tests. You can add your own created classes to dicontainer.php in order to enable the creation and maintenance of clean, testable code. See ownCloud: Dependency Injection [http://doc.owncloud.org/server/5.0/developer_manual/app/general/dependencyinjection.html] for more details.




img

Contains all image files used by application.




js

Contains all JavaScript for the application.




templates

There are two types of templates available to ownCloud apps–OC Templates and Twig Templates.

OC Templates provide template functions from the class OC_Templates [http://doc.owncloud.org/server/5.0/developer_manual/app/app/api/templates.html].

Twig templates are the preferred template because they provide better prevention of XSS. In order to facilitate integration with ownCloud, the App Framework provides additional functions for Twig. These can be found here [http://doc.owncloud.org/server/5.0/developer_manual/app/appframework/templates.html#additional-twig-extensions].




tests

Contains unit tests for your application. Tests usually have the suffix Test appended to the filename of the corresponding code to be tested. For example, controllers/ItemController.php would have a test file named tests/controllers/ItemControllerTest.php. PHPUnit executes all files ending in Test.php. See Unit Testing [http://doc.owncloud.org/server/5.0/developer_manual/app/appframework/unittesting.html] for more information.







          

      

      

    


    
         Copyright 2013, Morgan Vigil.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	mvigilCS263technology 1 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2013, Morgan Vigil.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  _static/down.png





_static/plus.png





getting_started.html

    
      Navigation


      
        		
          index


        		mvigilCS263technology 1 documentation »

 
      


    


    
      
          
            
  
Getting started



Installing your doc directory


You may already have sphinx sphinx [http://sphinx.pocoo.org/]
installed – you can check by doing:


python -c 'import sphinx'




If that fails grab the latest version of and install it with:


> sudo easy_install -U Sphinx




Now you are ready to build a template for your docs, using
sphinx-quickstart:


> sphinx-quickstart




accepting most of the defaults.  I choose “sampledoc” as the name of my
project.  cd into your new directory and check the contents:


home:~/tmp/sampledoc> ls
Makefile      _static         conf.py
_build                _templates      index.rst




The index.rst is the master ReST for your project, but before adding
anything, let’s see if we can build some html:


make html




If you now point your browser to _build/html/index.html, you
should see a basic sphinx site.


[image: _static/basic_screenshot.png]

Fetching the data


Now we will start to customize out docs.  Grab a couple of files from
the web site [http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/sampledoc_tut/]
or svn.  You will need getting_started.rst and
_static/basic_screenshot.png.  All of the files live in the
“completed” version of this tutorial, but since this is a tutorial,
we’ll just grab them one at a time, so you can learn what needs to be
changed where.  Since we have more files to come, I’m going to grab
the whole svn directory and just copy the files I need over for now.
First, I’ll cd up back into the directory containing my project, check
out the “finished” product from svn, and then copy in just the files I
need into my sampledoc directory:


home:~/tmp/sampledoc> pwd
/Users/jdhunter/tmp/sampledoc
home:~/tmp/sampledoc> cd ..
home:~/tmp> svn co https://matplotlib.svn.sourceforge.net/svnroot/\
matplotlib/trunk/sampledoc_tut
A    sampledoc_tut/cheatsheet.rst
A    sampledoc_tut/_static
A    sampledoc_tut/_static/basic_screenshot.png
A    sampledoc_tut/conf.py
A    sampledoc_tut/Makefile
A    sampledoc_tut/_templates
A    sampledoc_tut/_build
A    sampledoc_tut/getting_started.rst
A    sampledoc_tut/index.rst
Checked out revision 7449.
home:~/tmp> cp sampledoc_tut/getting_started.rst sampledoc/
home:~/tmp> cp sampledoc_tut/_static/basic_screenshot.png \
sampledoc/_static/




The last step is to modify index.rst to include the
getting_started.rst file (be careful with the indentation, the
“g” in “getting_started” should line up with the ‘:’ in :maxdepth:


Contents:

.. toctree::
   :maxdepth: 2

   getting_started.rst




and then rebuild the docs:


cd sampledoc
make html




When you reload the page by refreshing your browser pointing to
_build/html/index.html, you should see a link to the
“Getting Started” docs, and in there this page with the screenshot.
Voila!


Note we used the image directive to include to the screenshot above
with:


.. image:: _static/basic_screenshot.png




Next we’ll customize the look and feel of our site to give it a logo,
some custom css, and update the navigation panels to look more like
the sphinx [http://sphinx.pocoo.org/] site itself – see
custom_look.










          

      

      

    


    
        © Copyright 2013, Morgan Vigil.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_static/comment.png





_static/minus.png





_static/comment-bright.png





_static/ajax-loader.gif





_static/file.png





search.html

    
      Navigation


      
        		
          index


        		mvigilCS263technology 1 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2013, Morgan Vigil.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_static/comment-close.png





_static/up-pressed.png





_static/down-pressed.png





_static/up.png





